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Abstract–In the face of dramatic de-
clines in groundfi sh populations and 
a lack of suffi cient stock assessment 
information, a need has arisen for new 
methods of assessing groundfi sh popu-
lations. We describe the integration of 
seafl oor transect data gathered by a 
manned submersible with high-reso-
lution sonar imagery to produce a ha-
bitat-based stock assessment system 
for groundfi sh. The data sets used in 
this study were collected from Heceta 
Bank, Oregon, and were derived from 
42 submersible dives (1988–90) and 
a multibeam sonar survey (1998). 
The submersible habitat survey in-
vestigated seafl oor topography and 
groundfi sh abundance along 30-minute 
transects over six predetermined sta-
tions and found a statistical relation-
ship between habitat variability and 
groundfi sh distribution and abundance. 
These transects were analyzed in a 
geographic information system (GIS) 
by using dynamic segmentation to dis-
play changes in habitat along the tran-
sects. We used the submersible data to 
extrapolate fi sh abundance within uni-
form habitat patches over broad areas 
of the bank by means of a habitat classi-
fi cation based on the sonar imagery. 
After applying a navigation correction 
to the submersible-based habitat seg-
ments, a good correlation with major 
boundaries on the backscatter and 
topographic boundaries on the imagery 
were apparent. Extrapolation of the 
extent of uniform habitats was made 
in the vicinity of the dive stations and 
a preliminary stock assessment of sev-
eral species of demersal fi sh was calcu-
lated. Such a habitat-based approach 
will allow researchers to characterize 
marine communities over large areas 
of the seafl oor. 

Dramatic declines in several groundfi sh 
populations have occurred along the 
U.S. West Coast during the last decade 
(Ralston, 1998; PFMC1; Sampson,2 
Bloeser3). One problem exacerbating 
these declines is that current stock 
assessments are not suffi ciently precise 
or accurate to effect empirically based 
management. This is especially true 
for commercially important species 
of rockfi sh (Scorpaenidae, Sebastes), 
which comprise major groundfi sh fi sh-
eries along the Pacifi c Coast. Although 
evidence has accumulated for sub-
stantial declines in the abundance of 
several species of rockfi sh, the overall 
picture is unclear because 42 of 54 
rockfi sh species (78%) have never been 
assessed (Ralston, 1998; NMFS, 1999; 
Bloeser3). Of the 12 species that have 
been assessed by the National Marine 
Fisheries Service, fi ve were listed as 
“overfi shed” and one species was listed 
as “approaching overfi shed condition” 
(NMFS, 1999). 

A possible alternative to single-spe-
cies stock assessments of demersal 
fi shes is a habitat-based community 
assessment, which serves to estimate 
groundfi sh population sizes by recog-
nizing that species are not randomly 
distributed among varying habitats. It 

is known that the diversity, quality, and 
extent of bottom habitats are impor-
tant in determining the distribution, 
abundance, and diversity of rockfi shes 
(Carlson and Straty, 1981; Pearcy et 
al., 1989; Carr, 1991; Stein et al., 1992; 
O’Connell and Carlile, 1993). It has 
been previously demonstrated, within 
local study areas, that species richness 
and composition correlate with seafl oor 
texture (Hallacher and Roberts, 1985; 
Richards, 1986; Love et al., 1991; Stein 
et al., 1992; Krieger, 1993; Yoklavich et 
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Figure 1.  Nasby-Lucas et al.
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Figure 1
Location of Heceta Bank and the adjacent continental margin in relation to the Oregon coast. The 
survey area is outlined in bold lines.

44°40′N

44°20′N

44°00′N

124°40′W125°00′W 124°00′W

al., 2000; Hixon et al.4; Hixon and Tissot5). Correlations 
over larger regions have been diffi cult to determine be-
cause of the limitations in the resolution and areal cover-
age of bathymetric charts, which are crucial in providing 
broad-scale habitat data. However, this diffi culty no longer 
exists with the advent of differential GPS and high-reso-
lution sonar systems (Hughes Clarke et al., 1996). When 
adequately groundtruthed, these new systems provide 
bathymetric and backscatter data with suffi cient resolu-
tion to formulate habitat classifi cations over broad areas 
of the continental shelf and slope (Able et al., 1987; Yokla-
vich et al., 1995; Greene et al.6; Fox et al.7). 

4 Hixon, M. A., B. N. Tissot, and W. G. Pearcy. 1991. Fish 
assemblages of rocky banks of the Pacifi c northwest. Final 
report, OCS Study MMS 91-0052, 410 p. USDI Minerals Man-
agement Service, 770 Pasea, Camarillo, CA 93010.

5 Hixon, M. A., and B. N. Tissot. 1992. Fish assemblages of 
rocky banks of the Pacifi c northwest. Final report supplement, 
OCS Study MMS 92-0025, 128 p. USDI Mineral Management 
Service, 770 Pasea, Camarillo, CA 93010.

6 Greene, H. G., M. M. Yoklavich, D. Sullivan, and G. Cailliet.
1995. A geophysical approach to classifying marine benthic 
habitats: Monterey Bay as a model. Alaska Department of Fish 
and Game Special Publ. 9, p. 15-30. Alaska Department of 
Fish and Game, P.O. Box 25526, Juneau, AK 99802.

We developed this habitat-based groundfi sh assess-
ment strategy by integrating a comprehensive submers-
ible survey with new high-resolution sonar imagery of 
the seafl oor. Sonar images produce habitat data by using 
acoustic signals to differentiate areas of hard substrata 
from surrounding soft sediments based on differences in 
the intensity of refl ected sound. This technology has the 
distinct advantage of examining large regions of seafl oor 
sediment and geological topographic features without 
relying on expensive direct underwater bottom sampling 
and observation techniques. Sonar data can be used in an 
assessment of seafl oor habitat and fi sh density over large 
areas by extrapolating from direct observations of fi sh and 
seafl oor morphology transects using manned submers-
ibles or remotely operated vehicles.

The study site for this assessment was Heceta Bank, a 
50-km long outcrop on the outer shelf of central Oregon 
(Fig. 1). Heceta Bank is the largest rocky reef of the Pa-
cifi c Northwest and is characterized by high variability 
in bottom types and textures. The bank provides a diver-
sity of habitat types for many species of groundfi sh and 

7 Fox, D., M. Amend, and A. Merems. 1999. Nearshore rocky 
reef assessment. Coastal Management Section 309 Grant. 
Contract No. 99-072. Oregon Department of Fish and Wildlife, 
2040 SE Marine Science Drive, Newport, OR 97365
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invertebrates. These characteristics have made Heceta 
Bank one of the largest and most important of the heavily 
fi shed rocky banks in the Pacifi c Northwest. Along with its 
commercial importance, the bank has been the subject of 
substantial scientifi c research, which has made it an ideal 
site for developing these methods.

Direct observations of Heceta Bank were fi rst made in 
1987 in a series of 16 submersible dives used to character-
ize fi sh populations and habitats on the bank (Pearcy et 
al., 1989). These initial dives were used to select represen-
tative transects which were repeated in 1988, 1989, and 
1990 using the manned research submersible Delta (Hix-
on et al.4; Stein et al., 1992). The objective of these surveys 
was to investigate relationships between the abundance 
of groundfi sh and macroinvertebrates and the topography 
and texture of the seafl oor, as well as to document inter-
annual variation in these relationships. Fish observed 
during these surveys included 69 taxa, representing 24 
families, dominated by 24 species of rockfi sh. Multivariate 
analysis detected statistical relationships between habi-
tat characteristics and fi sh distribution and abundance by 
species and provided comprehensive data on fi sh-habitat 
associations, as well as a baseline for future comparisons.

Although invaluable, data from this set of submersible 
dives provided detailed “snapshots” of very limited areas 
of the Bank. To complement this study and to provide a 
broad view of the bank, a survey was performed in 1988 
with hull-mounted, Simrad EM300 multibeam sonar, 
which provided high-resolution bathymetry and backscat-
ter imagery of most of Heceta Bank (Merle et al.8). 

Materials and methods

Submersible dives 

Submersible observation data were collected by using the 
manned submersible Delta at six predetermined stations 
along Heceta Bank. Detailed descriptions of submersible 
operations used in our study can be found in Hixon et al.4 
and Stein et al. (1992), and a brief description follows. 
Surveys were conducted in the month of September and 
consisted of 18 dives in 1988, 12 in 1989, and 12 in 1990, 
for a total of 42 dives and 84 transects (Fig. 2). Each dive 
consisted of two 30-minute timed transects and a 10–15 
minute “quiet period” between transects to assess the 
effects of the submersible’s lights and motors on local 
fi sh distribution. The average length of each 30-minute 
transect was approximately 1015 m. Data on fi sh species, 
size, and abundance were collected by direct observations 
through the forward view port from approximately 2 m 
above the bottom, providing a bracketed transect width 
of about 2.3 m. During the transects, observations were 
verbally tape-recorded and visually recorded with a VHS Figure 2

Simrad EM300 multibeam bathymetry illuminated from the 
northwest, which creates shadows to the southeast of the 
relief. The 1988, 1989, and 1990 Delta submersible transects 
(six clusters of white lines) have been overlaid on top of the 
bathymetric data. The isobathymetric contours are at 50-m 
intervals, beginning with 100 m on the east side of the bank.
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8 Merle, S., R. W. Embley, J. Reynolds, D. Clague, C. Goldfi nger, 
and R. Yeats. 1998. A high-resolution image over the Heceta 
Bank off Central Oregon. Trans. Am. Geophys. Union 78, Fall 
Meeting Suppl., F818.
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videotape equipped with a timed data logger and audio 
track. 

Direct and videotaped observations along the tran-
sects consisted of the number of species of fi sh and mac-
roinvertebrates, and bottom-type characteristics. Fishes 
along the transects were identifi ed, counted, and lengths 
were estimated to the nearest decimeter with a three-
decimeter fi berglass rod suspended within the observer’s 
view. Bottom type was categorized from videotapes by 
using a two-code combination, the fi rst letter indicating 
the primary substratum (defi ned as covering at least 
50% of the area viewed) and the second letter indicat-
ing the secondary substratum (defi ned as covering more 
than 20% of the area viewed). If the fi eld of view was a 
single substratum, or the second most abundant substra-
tum covered less than 20% of the fi eld, the same letter 
was employed twice (e.g. MM for pure mud). The seven 
possible categories in order of increasing particle size or 
relief were mud (M), sand (S), pebble (P, diameter <6.5 
cm), cobble (C, >6.5 and <25.5 cm), boulder (B, >25.5 cm), 
continuous fl at rock (F, low vertical relief), and diagonal 
rock ridge (R, high vertical relief). The latitude and lon-
gitude positions of each transect were determined by 
using Loran-C with a Trackpoint II ultrashort baseline 
tracking system and by positioning the vessel directly 
above the submersible every 10 to 15 minutes. At least 
three position points were made per transect and the lo-
cations of bottom type and biological data were interpo-
lated between these points. The absolute accuracy of the 
submersible’s position, obtained by using Loran-C, was 
within about 150 to 500 m (Melton, 1986). 

Multibeam sonar 

The acoustic survey of Heceta Bank was conducted in 
May of 1998 with a Simrad EM300 (30 kHz) multibeam 
sonar system on the RV Ocean Alert (Merle et al.8). This 
survey provided a highly detailed, precisely navigated 
seafl oor map of bathymetry and seafl oor texture (Figs. 2 
and 3). The data were processed with Swathed software 
(Hughes-Clarke et al., 1996). The data processing steps 
used in Swathed were the following: navigation and sound-
ing editing, roll bias correction, tide correction, refraction 
correction, map sheet setup, gridding, and mosaicing 
which resulted in a composite map made up of acoustic 
backscatter imagery. The survey consisted of 47 overlap-
ping north−south swaths up to 45 km long, which provided 
images of approximately 725 km2 of the seafl oor and 
nearly 100% coverage of high-resolution bathymetry and 
backscatter amplitude. These data were displayed in grids 
with a resolution of less than 5 meters on the shallowest 
portions of the bank from depths of 70 to 150 meters, and of 
about 5 to 10 meters at depths down to about 500 meters. 

Data integration and habitat assessment

The sonar and submersible transect data were combined 
by using ArcView and ArcInfo geographic informa-
tion system (GIS) software. The sonar data used were 

Figure 3
Backscatter imagery of Heceta Bank from Simrad EM300 
multibeam survey. The lighter the shading the higher the 
refl ectivity of the substratum.
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bathymetry and backscatter and the submersible transect 
data included bottom type characteristics and fi sh density 
data. In order to represent the dive transects in GIS as 
linear features displaying changes in habitat and fi sh 
density, a dynamic segmentation data structure was used 
(ESRI, 1994). 

Bottom type and fi sh density data to be displayed using 
dynamic segmentation were derived from transect observa-
tion data. Transects were divided into segments by uniform 
bottom type. Fish density was calculated along each seg-
ment of habitat type by using the data for the most common 
species observed, accounting for 90% of the total, plus a few 
rare species of commercial importance (i.e. lingcod, sablefi sh, 
Dover sole and rex sole). This complex of species consisted of 
a mixture of demersal and benthopelagic species. The follow-
ing species were assessed: juvenile Sebastes sp. (unknown 
juvenile rockfi sh), Sebastes chlorostictus (greenstriped rock-
fi sh), Sebastes wilsoni (pygmy rockfi sh), Sebastes helvomac-
ulatus (rosethorn rockfi sh), Sebastes zacentrus (sharpchin 
rockfi sh), Sebastes fl avidus (yellowtail rockfi sh), Ophiodon 
elongatus (lingcod), Sebastolobus alascanus (shortspine 
thornyhead), Anoplopoma fi mbria (sablefi sh), Microstomus 
pacifi cus (Dover sole), and Errex zachirus (rex sole). The 
density of fi sh (number per hectare) was calculated by 
taking the number of fi sh sighted in that habitat segment, 
dividing by the area of the habitat segment in meters, and 
multiplying by 10,000 square meters per hectare. 

The use of dynamic segmentation data structure al-
lowed for the display of changes in bottom type and fi sh 
density data within the transect lines. This was done by 
creating a “route” system in ArcInfo from the dive transect 
data and associating it with an “event table.” The event 
table consisted of bottom type and fi sh density data, and 
their corresponding locations along the transect, and a 
route-identifi er number to link the information to the 
corresponding transects in the route system. For visual 
display, bottom type segments were combined into three 
major habitat groups: 1) mud, which consisted of “MM” 
observations, 2) rock ridge, which consisted of “RR” obser-
vations, and 3) mixed substrate habitat, which consisted of 
combinations of all other bottom type observations.

In order to combine the sonar and submersible data 
sets, all segmented dive transect data were then re-
projected with a 500-meter offset to the east. This was 
determined to be the best correction for discrepancies 
between the transect position data which were acquired 
by Loran-C and the sonar data which came from GPS posi-
tions. It was determined that this offset was necessary by 
comparing the two data sets and matching depth contours 
and borders of well-defi ned habitat, specifi cally interfaces 
between the mud and rock features of the bank. There 
did not appear to be a signifi cant north−south offset, al-
though this effect was more diffi cult to determine because 
the submersible transects did not cross any well-defi ned 
north–south boundaries. Transects segmented by both 
bottom type and fi sh density were overlaid on the sonar 
data in ArcView (Fig. 4, A–C).

Assessments of fi sh abundance within large habitat ar-
eas were performed by selecting patches of relative habi-

tat homogeneity on the sonar map around the location of 
each submersible transect. These patches were chosen by 
examining both patterns in the backscatter values and 
topographic features indicated by the backscatter and 
bathymetric data. In areas of mud off the bank, borders 
were chosen by maintaining constant depth as well as 
equal distance from the bank. In selecting patches to 
represent areas of similar habitat, the boundaries were 
relatively well defi ned in areas of rock and mud, but for 
mixtures of sand, cobble, pebble, and boulder, it was more 
diffi cult to distinguish distinct boundaries and therefore 
these patch borders were drawn conservatively. 

Using the observational data from the transects from 
all three years, we were able to characterize each habitat 
patch by percent bottom type, density of fi sh, and esti-
mated abundance of fi sh as extrapolated from the dive 
transect data contained within that patch. The grand 
mean density and standard error for each species was de-
termined by using a weighted density for each habitat seg-
ment based on a proportion of the length of that segment 
to the overall transect distance within that habitat patch. 
The grand mean density was calculated as

 x d pi i
i

n

=
=
∑ ,

1

 (1)

where x = x;
 d = density of fi sh within a segment of continuous 

bottom type; and 
 p = bottom type segment length/total transect 

length within the patch.

This calculation used the associations of the fi sh species 
with substrate type and weighted its contribution to the 
overall density by the comparative length of that segment. 
Total fi sh abundance for each habitat patch was deter-
mined by multiplying the area of the patch and the grand 
mean density and standard error of each species. The total 
abundance for each species for all habitat patches was 
determined by adding the abundance for that species for 
all eight habitat patches. The standard error for the total 
abundance for each species was determined by calculating 
a grand mean standard error weighted by using the stan-
dard error of each habitat patch multiplied by the propor-
tion of the abundance of that species for that habitat patch 
to the overall abundance for that species. Total abundance 
standard error was calculated by using Equation 1 where 
x = SE; d = standard error of fi sh abundance within a habi-
tat patch; and p = abundance within that habitat patch/ 
total abundance in all eight patches.

Results

Comparing the submersible data with the sonar data, 
we found that there was high correlation between the 
direct observations of bottom type and the habitat type 
indicated by the sonar data. Side-lit bathymetry revealed 
areas of outcropping substrata and the backscatter data 
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showed changes in seafl oor texture. Borders of rock ridge 
and mud observed in the submersible survey matched the 
bathymetric data, indicating areas of high relief for rocky 
patches and low relief for areas of mud (Figs. 4A and 5). 
Changes in backscatter also corresponded with changes 
observed in bottom type from the submersible data (Fig. 5). 

It was noted consistently that high-backscatter areas 
were associated with mixed substrate habitat, comprising 
a combination of pebble, cobble, and boulder, which due 
to their size and geologic composition have a relatively 
high refl ectivity. Mid-backscatter values were found to be 
associated with rock ridge features. These are typically 

Figure 4
Submersible transects in the middle portion of Heceta bank segmented by observations 
of (A) bottom-type habitat, categorized by mud, mixed substrate, and rock ridge (B) den-
sity of Dover sole (Microstomus pacifi cus ) and (C) density of rosethorn rockfi sh (Sebastes 
helvomaculatus). 
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large-scale rolling ridges with less small-scale relief. Low-
backscatter values were associated with mud bottoms, 
which have characteristically low refl ectivity. 

Eight regional patch boundaries were drawn based on 
areas of relative homogeneous seafl oor sonic character-
istics around the six stations surveyed by submersible 
(Fig. 5). These patches (labeled A–H) ranged from 1.8 km2 

(patch B) to 38.9 km2 (patch C) (Table 1). Patch boundaries 
for A, C, and F were drawn around areas of mid-backscat-

ter refl ectivity and high relief indicated by the bathymet-
ric data, and were located in relatively shallow areas of 
the bank (75–125 m). Patch boundaries for D and H were 
drawn around mud areas located off the edge of the bank, 
which exhibited low-backscatter values, low relief on the 
bathymetric data, and were located in deeper waters (150–
300 m). Patch boundaries for B, E, and G were drawn 
around areas of high backscatter and were present in 
intermediate depths (100–150 m). 

Figure 5
Habitat patch boundaries and transects segmented by bottom type overlaid on both bathymetric and back-
scatter sonar images. Habitat patches are labeled A−H. The bottom-type observations were grouped into 
three predominant habitats: mud, mixed substrate, and rock ridge.
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Combining the sonar-derived habitat patches and sub-
mersible observations gave an indication of bottom-type 
compositions for the defi ned patches. Of the eight habitat 
patches analyzed, three of the habitat patches were pre-
dominantly rock ridge (patch A—63% RR and 14% RC/RB; 
patch C—55% RR and 3% RB/RC; and patch F—66% RR), 
two were predominantly mud (patch D—98% MM; and 
patch H—60% MM and 36% MC/MP), and three were a 
mixture of boulder, cobble, pebble, and mud (patch B—
75% BC/CB/MB/MC/MM/CM/MP/BM/BB; patch E—83% 
MC/MM/MP/CM/MB/CP/BM/BC/CB/PM/CC/BB/BP/PB; 

and patch G—100% BC/CB/CM/CC/MP/MC/MM/PM/BB) 
(Fig. 6). 

There were differences in fi sh density within the patch-
es between the three major habitat classifi cation types, 
as well as differences among patches of similar bottom 
types (Fig. 7, Table 1). Species with the highest association 
with rock-ridge habitat patches were yellowtail rockfi sh, 
juvenile rockfi sh, and lingcod. Those primarily associated 
with mud habitats were Dover sole, rex sole, and short-
spine thornyheads. Those associated with mixed substrate 
patches were sharpchin rockfi sh, rosethorn rockfi sh, green -

Figure 6
Percent cover of bottom types calculated from observations of all transects contained 
within each of the eight habitat patches labeled A–H. Bottom types are listed from left 
to right by decreasing relief and particle size, where the fi rst letter is the dominant 
substratum and the second letter is the second most prevalent substratum. Substrate 
categories shown comprise only the 10 most dominant bottom types, consisting of com-
binations of R = rock ridge, B = boulder, C = cobble, M = mud, and P = pebble.
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striped rockfi sh, and pygmy rockfi sh. Juvenile rockfi sh 
were found predominantly in rock-ridge habitats, and 
found in substantially high density (25,577 [±6521] fi sh/
hectare) in patch C as compared with the other rock ridge 
patches (patch A 1140 [±536] fi sh/hectare and patch F 
4709 [±5309] fi sh/hectare). Both Dover sole and rex sole 
were associated with mud habitat, and both were found 
in higher densities in patch D (Dover sole—312 [±33] 
fi sh/hectare, rex sole—143 [±18] fi sh/hectare) than patch 
H (Dover sol—217 [±29] fi sh/hectare, rex sole—24 [±14] 
fi sh/hectare). Pygmy rockfi sh were found in high density 

in mixed substrate patches B and F (12,435 [±3392] fi sh/
hectare and 12,119 [±3531] fi sh/hectare) but at a substan-
tially lower density in patch G (3236 [±81] fi sh/hectare).

Among all eight patches, the species found in the highest 
abundance overall were juvenile rockfi sh and pygmy rock-
fi sh, and those in the lowest abundance were lingcod and 
sablefi sh (Table 1). The total area of all habitats assessed 
was 124 km2, which is approximately 17% of the total area 
of the sonar survey, and the total number of estimated 
fi sh and standard error for that area was 156,598,000 
±16,854,000. The coeffi cient of variation was relatively low 
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Figure 7
Fish densities (mean ±SE) for each habitat patch calculated from all transects con-
tained within each patch. JR = juvenile rockfi sh (Sebastes species); GR = greenstriped 
rockfi sh (Sebastes elongatus); PR= pygmy rockfi sh (Sebastes wilsoni); RR = rosethorn 
rockfi sh (Sebastes helvomaculatus); SR = sharpchin rockfi sh (Sebastes zacentrus); YR = 
yellowtail rockfi sh (Sebastes fl avidus); LC = lingcod (Ophiodon elongatus); ST = short-
spine thornyhead (Sebastolobus alascanus); SB = sablefi sh (Anoplopoma fi mbria); DS = 
Dover sole (Microstomus pacifi cus); and RS = rex sole (E. zachirus). 
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for greenstriped rockfi sh, rosethorn rockfi sh, sharpchin 
rockfi sh, shortspine thornyhead, and Dover sole (between 
3.7% and 6%) and slightly higher for pygmy rockfi sh, yel-
lowtail rockfi sh, lingcod, sablefi sh, and rex sole (between 
7.8% and 11.9%).

Discussion

A primary fi nding of our study was that distinct bottom 
types found on Heceta Bank are distinguishable through 
the use of sonar data and that these interpreted habitats 
correlate with direct submersible observations of bottom 
type. The determination of habitat information from sonar 
data is signifi cant in that it provides a broad-scale view 
of the seafl oor habitat, previously unavailable, and allows 
a habitat-based groundfi sh assessment. Although seafl oor 
imaging and GIS techniques have previously been used in 
the study of marine habitats (e.g. Meaden, 1999; McRea et 
al., 1999; Sherin, 1999; Yoklavich et al., 2000), ours is one of 
the fi rst published studies where GIS technique was used 
to combine a detailed analysis of fi sh and habitat transect 
data with broad-area high-resolution sonar seafl oor imag-
ery and where total fi sh abundances were calculated for 
large areas of the seafl oor (see also O’Connell et al.9). 

Habitat type could not be determined by bathymetry or 
backscatter data alone, but the information provided by 
both data sets, in addition to groundtruthing by direct sub-
mersible observation, gives a clearer picture of the overall 
habitat environment. The use of the backscatter data 
combined with the bathymetric data has the advantage of 
providing an indication of substrate type, which is clearly 
important in fi sh-habitat associations. In general, however, 
backscatter provides a better indication of habitat for fi sh 
association purposes. Bathymetric data can provide geo-
logical structure on the resolution of fi ve to ten meters, 
whereas backscatter data give an indication of structural 
variation on a smaller scale, which is of ecological impor-
tance in infl uencing the distribution of groundfi sh. For ex-
ample, the physical properties of a substrate infl uence the 
types of invertebrates that colonize the seafl oor, and local 
relief can provide microhabitats for some fi sh.

The extent to which a groundfi sh habitat can be ef-
fectively mapped by remote sensing is determined by 
the resolution of the system used. In general, sonars are 
optimized for specifi c operational depth ranges. A sys-
tem designed for very shallow water can have suffi cient 
resolution to provide contours of features or objects that 
deeper water (lower frequency and longer range) systems 
will only “see” as backscatter changes. As more sites are 
studied by combining visual seafl oor transects, high-reso-
lution sonar, and GIS techniques, it is likely the geologic 
indices most relevant to groundfi sh habitats will become 

apparent. These methods should lead to a more coherent 
approach to habitat-based stock assessments.

One of the limitations of this habitat-based approach 
to stock assessments has to do with strong reliance upon 
the fi sh-substratum association. The distribution and 
abundance of groundfi sh has been shown to be strongly 
correlated with substrate type (see introduction), but fi sh 
distributions and densities may vary with other factors as 
well, such as depth, currents, nutrients, and food avail-
ability. In this study there was an attempt to address this 
potential problem of over emphasizing the fi sh substra-
tum relationship through the grouping of habitats into 
patches. The designation of habitat patches allowed the 
grouping of areas of potentially similar biotic and physi-
cal characteristics. Thus, the use of patches as areas for 
fi sh density estimates allowed for increased accuracy in 
forming abundance estimates from the habitat-groundfi sh 
association information. For example, this advantage was 
apparent by high variance in fi sh density estimates among 
patches of similar bottom type, such as the high density of 
juveniles in one of the three rock ridge patches. Variations 
in density in similar patch types of our study were also ob-
served for Dover sole, rex sole, and pygmy rockfi sh. These 
patterns may be due to differences in depth, food avail-
ability or variations in percent composition of substrate 
type in separate areas of the bank. The other benefi t of 
using habitat patches was that it allowed the testing of 
new groundfi sh assessment methods without making pre-
dictions for areas of high uncertainty where submersible 
transects were not performed. 

Hixon et al.’s study4 is one of only a few comprehensive 
habitat-groundfi sh studies available and has provided a 
foundation for testing this new approach. Hixon et al’s 
dataset provided invaluable habitat information, but had 
several shortcomings. One problem was that of the incon-
sistency in positional data because of the use of Loran-C 
(GPS was not yet available). Another problem, characteris-
tic of all submersible studies, was the overall limited spa-
tial sampling provided by the survey. The stations for the 
study were chosen as representative habitats for Heceta 
Bank from exploratory submersible dives conducted by 
Pearcy et al. (1989) in 1987. However, not all of the rep-
resentative habitat areas were sampled because maps 
of high-resolution bathymetry and backscatter were not 
available at that time. Lack of complete habitat data made 
it diffi cult to extrapolate bottom-type and fi sh-density data 
to the entire bank.

The use of observational data from submersibles for de-
termination of fi sh density, and extrapolation from these 
data to total abundance within regional habitat patches, 
were based on several assumptions. First, we assumed 
that the areas sampled were representative of the entire 
regional patch to which each transect belonged. Whatever 
error was associated with this assumption, our approach 
is certainly more accurate that any method that ignores 
habitat variation. Second, we assumed that all fi sh within 
each submersible transect were accurately identifi ed 
and counted. Identifi cation of similar species of rockfi sh 
can be problematic, and counts clearly become estimates 
when dense schools are encountered. Third, we assumed 

9 O’Connell, V., and C. Carlile, and C. Brylinsky. 2001. De-
mersal shelf rockfi sh stock assessment and fi shery evaluation 
report for 2002. Regional Information Report 1J01-35, 43 p.
Southeast Region, Division of Commercial Fisheries, Alaska 
Department of Fish and Game, P.O. Box 25526, Juneau, AK 
99802.
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that avoidance or attraction of fi sh in response to the 
submersible was minimal, and thus did not affect counts 
substantially. This assumption was tested by Hixon et al.4 
by observing the local distribution and abundance of fi sh 
around the submersible just before and after the 10–15 
minute “quiet periods” on the bottom, during which all 
motors and lights were turned-off. Quiet periods were con-
ducted for all transect dives, and there was no indication 
that fi sh behavior was altered by the presence of the sub-
mersible. However, midwater schools of yellowtail rock-
fi sh sometimes circled the submersible during transects, 
which could have affected counts if fi sh were counted more 
than once. The fi nal assumption was that transect width, 
which varied as a function of the altitude of the submers-
ible above the seafl oor, was constant. Certainly, there was 
some variation in altitude, yet the error introduced was 
presumably insubstantial except perhaps in areas of ex-
tremely heterogeneous vertical relief.

This study provides an expanded view of the groundfi sh 
habitat of Heceta Bank in areas adjacent to the histori-
cal Delta transects. In order to perform a full assessment 
of the bank it will be important to groundtruth habitat 
types for the entire extent of the bank. The new sonar da-
ta have indicated areas on the bank that contain unique 
habitats that have not been identifi ed. The best study 
plan would have been to gather the sonar data fi rst, then 
use the detailed imagery to defi ne patches of uniform 
bottom type for planning subsequent stratifi ed random 
sampling and groundtruthing using submersibles. The 
next phase of our project was initiated in June 2000 and 
involved operations with the manned submersible used 
in the original study and an advanced remotely operated 
vehicle (ROV) to conduct transects on unsurveyed areas, 
as well as to repeat the original historical transects. Not 
only will this approach optimize the techniques developed 
in our project but may also provide the opportunity to es-
timate changes in fi sh density on Heceta Bank over the 
past decade. 

Conclusions

In this exploratory project we have demonstrated how sonar 
and submersible data can be combined to allow habitat-
based stock assessments of multiple species of groundfi sh. 
Despite its limitations, this method provides the possibility 
for a detailed look at fi sh abundance using habitat associa-
tions. This approach could be used to address the problem 
of the high number of groundfi sh species that are currently 
unassessed. It offers the prospect of examining multiple 
species of fi sh and may provide a better indication of fi sh 
abundance estimates, particularly for multiple species, 
than is possible using current methods. 

The method presented in our study provides an alter-
native for assessing these ten groundfi sh species and ad-
ditional groundfi sh species that are currently unassessed, 
as well as for monitoring species that are considered to 
be overfi shed. Of the groundfi sh species examined in this 
study using the 1988−90 submersible observations, the 
status of all, but the pygmy, rockfi sh has been reported 

recently (NMFS, 1999). In the NMFS report on the sta-
tus of fi sheries in the United States, only the lingcod was 
reported as “overfi shed.” Yellowtail rockfi sh, shortspine 
thornyhead, sablefi sh, and Dover sole were listed as 
“not approaching overfi shed,” and the status of rex sole, 
greenstriped rockfi sh, rosethorn rockfi sh and sharpchin 
rockfi sh was reported as “unknown” (NMFS, 1999). In 
addition to the ten species that were examined here, the 
method described in our study would be important for 
assessing species of rockfi sh found on Heceta Bank that 
are considered overfi shed, such as the canary rockfi sh, Pa-
cifi c ocean perch, and darkblotched rockfi sh. It should be 
stressed, however, that this method would be useful only 
for those species that are closely associated with seafl oor 
habitats and spend most of their time near the bottom. For 
example, yellowtail rockfi sh are found as high as 25–35 
m off the seafl oor, so that transect data collected on the 
seafl oor may not accurately refl ect their true abundance 
(Pearcy, 1992).

The preliminary work in this study is a step toward 
creating a model approach for characterizing and quanti-
fying groundfi sh and their habitat associations on a scale 
meaningful to the stock assessment of commercial species 
and the conservation of benthic communities. Traditional 
stock assessment methods for groundfi sh have been inad-
equate. Our study is the fi rst step in the development of 
a new quantitative method of assessing groundfi sh stocks 
that is independent of traditional trawl surveys. Overall, 
this habitat-based approach to stock assessment has par-
ticular recommendation for defi ning and mapping essen-
tial fi sh habitat, as well as providing important data for 
designing and managing marine reserves and protected 
areas. 
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